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The influence of the order of smallness of damping on the subharmonic oscillations of 
the order of 1/2 in a system described by the Duffing equation is analyzed. 

Let us consider a nonautonomous system with one degree of freedom 

2” + $- 5 = f (4 + PF (4 zj 5.9 P) (1) 

where n is a positive integer. The function F (t, 2, x’, p) is analytic in x and g in some 

domain of their variation, and in the small parameter TV for 0 < p < pO. Moreover f (t) 
and F (t, x, x’, p) are continuous, 2n-periodic functions of t. 

The solution of the generating system is 

x0 (t) = cp (t) + r10 cos + + nB0 sin + 

Here the forced oscillations are &x-periodic, while the natural oscillations are 2nn- 

periodic. 
We seek the subharmonic Zxn-periodic oscillations of the order of l/n of the initial 

system. The initial conditions are, as usual [1], 

x(O)=~!0)+~,+~,~~(~~=cp’(~~+~,+Y (3) 

where p and y are functions of p and vanish when I_C = 0. 

We wiite the solution of (1) in the form 

s(t)=‘P(t)i-(,4u+P)cos~-+n(Bo;-y)sin ++ 

while the amplitudes -4, and B, are given by 
2xn 

c1 (2nn) = - ,I 
c 

F (6 ~0, zn’, 0) sin L dt = 0 
b 

II 

2-n 

c1’ (L?nn) = \ F. (t, 50. x0’. 0) cos” dt = 0 
ii 

n 

(4) 

(5) 

The latter equations always have the solution A, = 0 and B, = 0 corresponding to 

the 2n-periodic solution @I. They may also have nonzero solutions corresponding to 

the period of 2nn. 

A question arises whether the subharmonic oscillations will always be present in the 
given system. 

Hale [3] succeded in obtaining the conditions of existence of the subharmonic oscilla- 
tions for two types of equation. One of them represents a generalized Duffing equation 

5” + (A2 2 = Y CDS t + p i csx2s+1 - p'bx' (6) 
s=o 
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Let us denote by [n/r] a smallest integer larger than n/r. Hale has shown that subhar- 
monic oscillations exist in the given system if Ic > [n/r]. Thus the larger the value of 

n, i.e. the higher the order of the subharmonic oscillations, the weaker the damping suf- 

ficient to neutralize these oscillations. The estimate given above holds for odd order 
subharmonic oscillations. 

We shall show how the influence of the resistance forces on the existence of subhar- 

monic oscillations can be analyzed in specific cases, using the amplitude equations. We 
shall also consider the following Duffing equation as an example : 

5” -;- K’x =- z’&OSt + &sint + p (a,~ + c&j - p”1.,~’ (‘i) 

where k is a positive integer. Let us make the transformation of time t = no and intro- 

duce the following notation (n > I) : 

T’ = d.z / dr. ni a, = ~7, n2 co = c, nb,= 0 

n \‘o - -= ii ~- n?)v, t?%, == (1 - $)A, 
We obtain 

1” + Z = (1 - nz)v COS nt f- (1 - n2)h sin n7 + p (as -t ~9) - p.“hs’ (8) 

The solution of the generating system is 
I,-vcosn~-t_hsinnr-tn,cos~+B,sinr (9) 

As a result of the transformation t = nt the natural oscillations now have a period 
of 2n, with the subharmonic oscillations of any order. 

We consider the subharmonic oscillations of the order of 1/2. First we construct the 
amplitude equations without damping (b = 0). We have 

cr (7X) = - JCB” [n -I- 3/!y(v2 + L-J) + 3/lC (A$ + B,‘)] -_ 0 (IO) 
(71’ (2x) = Tt. 10 [a )- 3;12’: (\J -+ 12) $ 3/,r (A,2 + Boy] = 0 

The null solution of these equations is of no interest, since it corresponds to the solu- 

tion of (8) n-periodic in -c . Equations (10) yield a single equation for the amplitudes 

A, and B, a + 312c (V2 + ?““) + 3/rc (“102 -+ B$) = 0 WI 
Equation (11) can be written in the form 

A,z+B,2= P (W 

Thus we find that the solutions of the amplitude equations are real when either 

P > O,or X22 f- k2 < - 2/3a/c, ac < 0 (13) 

The second equation is obtained from the terms of the order of nz, using the relation f4] 
A,C, (2n) -t B,C,’ (2~) = 0 (14) 

Fairly complicated computations now give 
24 ,B, (_4,,2 - Bo2) (v2 - ks) - (‘4,’ - 6.4,2B02 + B,‘)vI == U (1.5) 

From (11) and (15) it follows that -for v # 0 and h # 0 neither A,, nor B,, is equal to 

zero. Let us devide both parts of (15) by 8,’ and set G = A ,, i B,. Then we have 
24 _ 2123 ._~ [j22 1. "Is ~:L 1 Y (1, 1 = (v" - ?L‘q J %?A. (16) 

It can easily be shown that when the parameter 2 is real, all roots of (16) are also real. 
This follows from the form of the curve depicting the left-hand side of Eq.(16) on a plane. 
This curve intersects the abscissa four times, since it passes through the points (0, 1) and 
( fl, -4), and tends to f- 0% as i -, + CC. 

A general solution to the amplitude equations (11) and (15) cannot be obtained. For 
v = 0 or h = 0,we have 

for Y = A we find 
Ao2 = Bo2 = .- (A” + 2~3 a/c), A, = B$ = - (~2 + Q,3 a,ic) (ii) 
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LLJz = - (2 * JG)(G + l/3 a/c), Bo2 = - (2 F f:)(v2 + 1,‘s n/c) (18) 

The functional determinant of (11) and (1s) does not vanish, consequently the ampli- 
tude equations have simple solutions. From this it follows that, for n = 2 and 6 - 0 , 
the 2n-periodic solutions of (8) expand in the integral powers of P. 

Obviously the amplitude equations are not affected if damping of the order of p’ for 
ZL. > ” is introduced into the system. It follows that the damping of the order indicated 

has no influence on the possibility of appearance of subharmonic oscillations considered 
here. 

We now consider the subharmonic oscillations with damping of the order of P2, The 
first amplitude equation (11) remains unchanged, while the second one becomes (I:)} 
=/1($* [2/l ,B, (/lo2 - B$) (Y’ - a2) - (A o4 - 6A,280? + R,4)v)L] - b (A,* -;- f?,,2) z: (1 

The latter can be made homogeneous by multiplying it by (12). Assuming that 
Y # 0 and h # 0 we obtain, after some transformations 

z4 - 2ZlcG - Nz2 + 2Mz + 1 = 0 (20) 

The curve representing the left-hand side of Eq.(20) passes through the points (0, 1) 

and (f 1, 2 --N).Consequently we can assert that Eq.(20) has real solutions if at least - 
2 -_N 5 0 . Thus Q < 1 represents the sufficient condition of existence of real solutions. 
It can be shown that at sufficiently large C, the subharmonic oscillations will be absent. 

If either Y or a becomes zero, e. g. h = 0, then Eq.(20) can be written as 
IG b 1 

Zi (2” + 1)s - a2 (z” - 1) = 0, Zi= xc”* (22) 

When R = 0 , its solution is (17). Obviously real solutions of (22) also exist on some 

segment 0 6 I1 e K, < 1 . 
Thus when damping is of the order of ~2 subharmonic oscillations of the order of Iliz 

can be obtained, but only over a more narrow range of the coefficients of the Duffing 

equation than that spanned by the oscillations when damping is absent. 
- Finally we discuss the problem of existence of subharmonic oscillations of the order 

of 1/2 in the Duffing system for k = 1. In this case the amplitude equations are 

Cl (‘n) = - ;I {B,, [a + 3/:! c (2.: + h”) + “/r c (.-loz + &2)] - b&) = 0 (13) 

L’r’ (?n) = n (ilo [a + 3/2 c (v’ + h”) + 3;4 c (A,’ + Ilo*) ] + b&} = 0 

These equations have a unique real solution A, = 0, B, = 0. It follows that when 

damping of the order of l& is introduced, subharmonic oscillations of the order of I/, are 

impossible in the Duffing system. 
Thus the method of analyzing the amplitude equations can be employed in solving 

specific cases of the problem of conditions of existence of the subharmonic oscillations. 
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